初中芝士汇总
超小超大

数学函数复习

复习(二)函数基础知识

(1) 函数: 如果在一个变化过程中,有两个变量x、y,对于x给定的一个值,y都有唯一 一个值与之对应,此时称y是x的函数,其中x是自变量,y是因变量.

(2) 自变量的取值范围:①函数关系式是整式,自变量取值是任意实数.②函数关系式是分式,自变量取值应使得分母不等于0.③函数关系式是偶次根式,自变量取值为非负数.④实际问题的函数式,使实际问题有意义

(3)常量与变量:常量:在某变化过程中不变的量。变量:在某变化过程中变化的量

(4)函数的三种表示方法:表格; 关系式; 图象

复习(三) 一次函数

(一)一次函数图像:

1. y=kx(k0)的图象是一条过 点(0, 0)和点(1,k)的直线。

2.y=kx+b(k0)的图象是一条过 点(0, b)和点(,0)的直线。

(二)一次函数y=kx+b系数对图像的影响:

1.系数k对图像的影响:

(1)k决定所过象限:①k>0,必过第一、三象限。②k

(2)k决定增减性:①k>0,y随x的增大而增大。②k

(3)决定倾斜程度:①越大,直线越陡;②越小,直线越缓;③越大,函数变化速度越快

(4) 已知直线上两个点的坐标,

写出 k =

(5)已知直线与x轴所夹的锐角为∠,则

①直线过一三象限,k=tan

②直线过二四象限,k= tan

2.系数b对图像影响:b决定直线与y轴的交点

(1)b>0,直线与y轴的交点在正半轴

k、b的作用

表达式:

图像性质:

k>0b>0

b=0

b<0

k<0

b>0

b=0

b<0(2)b

(3)b=0,直线过原点

(三)附函数图像表格:

(四) 两直线的关系:

直线y=k1x+b1(k10)与直线y2=k2x+b2(k20)

(1)当k1 =k2 且b1 =b2时,两直线重合。(3)当k1k2时,两直线相交。

(2)当k1 =k2且b1b2时,两直线平行。

(4)当k1k2 = -1 时,两直线互相垂直.

(五)一次函数图像的平移:x管左右平移(左加右减),b管上下平移(上加下减)

1.将y=kx+b向上平移m个单位,得y=kx+b+m (注m>0)

2.将y=kx+b向下平移m个单位,得y=kx+b-m (注m>0)

3. 将y=kx+b向左平移a个单位,得y=k(x+a)+b (注a>0)

4. 将y=kx+b向右平移a个单位,得y=k(x-a)+b (注a>0)

(六)直线y=k1x+b1(k10)与直线y2=k2x+b2(k20)求交点:联立两个表达式解二元一次方程组。

(七)确定一次函数表达式:3种方法①已知k型,直接把k设成数②已知b型,直接把b设成数③普通两点型,代入两个点,解二元一次方程组

复习(四)反比例函数

1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式(或y=kx-1,k≠0),那么称y是x的反比例函数.

2.反比例函数的概念需注意以下几点:(1)k为常数,k≠0;(2)自变量x的取值范围是x≠0;(3)因变量y的取值范围是y≠0.

3. 反比例函数的图象和性质

k的符号o

k>0

k<0

图像的大致位置所在象限

第一、三象限

第二、四象限

性质

在每一象限内y随x的增大而减小

在每一象限内y随x的增大而增大

4.︱︱的几何含义:反比例函数y= (k≠0)中比例系数k的几何意义,即过双曲线y= (k≠0)上任意一点P作x轴、y轴垂线,,则所得矩形OMDN的面积为︱︱. 所得ΔPDO面积等,为︱︱.

5.反比例函数与一次函数相交(三线四域):

一次函数=kx+b的图象与反比例函数=的图象交于点A(2,3),B(﹣3,﹣2)两点,

(1)当xx

(2)当x

(3)当xx

6.如图所示,过点A作AM⊥x轴于点M,BN⊥x轴于点N.

结论:SΔPDO=S梯形BNMA

复习(四)二次函数

(一)二次函数一般式y=ax2+bx+c的平移:(用配方法)

(1)首先化为顶点式

(2)h: 先左右平移︱h︱ (左加右减)

K: 后上下平移︱k︱(上加下减)

(二)二次函数与坐标轴的交点

1.与y轴的交点:令x=0,得y=c, 所以与y轴的交点为(0,c)

2.与x轴的交点:令y=0,得一元二次方程

①有两个交点方程有2个不等实根;

②有一个交点方程有2个相等实根

③无交点方程无实根

3.已知抛物线与x 轴两个交点为(,0)(,0)

所以有交点式:y=a(x-)(x-)

4.若抛物线与x轴交于A、B两点,则两点间的距离为

︱-︱=

(三)二次函数与系数a、b、c的关系:

(1)a决定开口方向(a>0开口向上,a<0开口向下)

a决定增减性(a>0左减右增,a<0左增右减)

︱a︱决定开口大小(︱a︱越大,开口越窄,︱a︱越小,开口越宽)

(2)a、b的符号决定对称轴位置:

①a、b同号对称轴在y轴左侧

② a、b异号轴在y轴右侧 (左同右异)

③当b=0时,对称轴为 y轴 (此时,+ c)

(3)c决定与y轴交点(0,c)的位置:

①c>0,与y轴交点在正半轴

②c<0, 与y轴交点在负半轴

③c=0,图象过原点(0,0).(此时,+ bx)

a

a>0

a<0

开口向上, 左减右增,

开口向下 ,左增右减,

b

“左同右异”

ab>0

b=0

ab<0

对称轴在 y轴左侧

对称轴为 y轴 (此时,+ c)

对称轴在 y轴右侧

c

c>0

c=0

c<0

与y轴正半轴相交;

经过原点;(此时,+ bx)

与y轴负半轴相交.

Δ=与x轴有2个交点;

与x轴有1个交点;

与x轴有无交点;

初中芝士汇总提示您:看后求收藏(同创文学网http://www.tcwxx.com),接着再看更方便。

相关小说

司家有位电竞大佬 连载中
司家有位电竞大佬
桑兔love帝君
简介:【震惊‼(•'╻'•)꒳ᵒ꒳ᵎᵎᵎ,司家小小姐和传闻中不一样,有知情人士爆料司家小小姐刁蛮任性,把所有人看做蝼蚁,不知是否属实?】记者:“请问司小姐,传闻中你刁蛮任性是否属实?”司徒末雪:“并不属实,我并不是那种刁蛮任性的人.”记者:“那司小姐方便回答我们几个问题吗?”司徒末雪:“方便”记者:“请问司小姐传闻中您把所有人看做蝼蚁是否属实?”司徒末雪:“并不属实,请大家不要造谣我,我并不是那样的人.”记着:“谢谢司小姐的配合.”———————————————————【震惊‼(•'╻'•)꒳ᵒ꒳ᵎᵎᵎ,有知情人士爆料司家小小姐是电竞大佬,不知是否属实?有知情人士爆料司家小小姐会的东西很多,获得过很多称号,不知是否属实?】记者:“请问司小姐您是电竞大佬,这件事是否属实?”司徒末雪:“我只是会玩一点电竞,并不是电竞大佬.”记者:“可是有知情人士爆料,你又获得过很多电竞奖项,请问这是为何?”司徒末雪:“我只是会玩一点,所以就获得了一点奖杯而已.”路人:“大姐,你看看你这说的是啥?你确定你不是电竞大佬?你这不是在凡尔赛吗?你这就会玩一点,获得了几个奖杯,这是我们正常人无法比的.”[生无可恋]
0.7万字2年前
乐醉其间 连载中
乐醉其间
我啥也不知道_3779066966888
0.3万字2年前
暮色余阳 连载中
暮色余阳
赠与君琴声
简介:双男主
1.0万字2年前
我经历过的,你呢 连载中
我经历过的,你呢
逍遥瑶遥谣
简介:经历是悲伤还是欢喜都是你的选择,我也为自己的选择付出了代价
1.4万字2年前
停留的21岁 连载中
停留的21岁
文字呆人
简介:【已完结】青春年少最轻狂,一切还是走得太快了!好可惜!……我只能爱你五年,也只能爱你到21岁了。林知祎坐在病床上,看着透过百叶窗的阳春白雪,“杨怀仁,我快十八岁了,还不回来吗?”她以为再也等不到,他在她生日那天回来了,他告诉了她,他最近消失的时间发生了什么,她才知道,他比她更苦。“林知祎,十八岁后的你,可以只属于我吗?”林知祎看着帅气的杨怀仁嘴角含着笑,“杨怀仁,从我认识你算起,我先爱你五年好吗?后面的日子,我会再努力!”
13.1万字2年前
世界那么大我想去看看 连载中
世界那么大我想去看看
qzuser_868702670
简介:简介正在更新
0.2万字1年前