初中芝士汇总
超小超大

数学函数

复习(一) 图形与坐标变化

一、点的特征:

1.第一象限内的点(+,+);.第二象限内的点(―,+);

第三象限内的点(―,―);.第四象限内的点(+,―);

2.坐标轴上的点:

(1)横轴(x轴)上的点纵坐标为0,即(x,0);

(2)纵轴(y轴)上的点横坐标为0,即(0,y).

3.平行:

(1)平行于x轴的同一直线上的点,有相同的纵坐标。

(2)平行于y轴的同一直线上的点,有相同的横坐标。

(3)平行于x轴的一条线段的长度等于两个端点横坐标之差的绝对值 ︱

(4)平行于y轴的一条线段的长度等于两个端点纵坐标之差的绝对值 ︱

4.对称:

(1)关于x轴对称的两个点,横坐标相同,纵坐标互为相反数。(x,y)←→(x, - y)

(2)关于y轴对称的两个点,纵坐标相同,横坐标互为相反数。(x,y)←→(- x, y)

(3)关于原点对称的两个点,横、纵坐标都互为相反数。(x,y)←→(- x, - y)

(4)关于直线直线y=x对称的两个点,横纵坐标位置互换。(x,y)←→(y,x)

(5)关于直线直线y= -x对称的两个点,横纵坐标都变成相反数后位置互换。(x,y)←→(- y, - x)

5、距离:

(1)点(x,y)到x轴的距离为纵坐标的绝对值,即︱y︱

(2)点(x,y)到y轴的距离为横坐标的绝对值,即︱x︱

(3)点(x,y)到原点的距离为

(4)点(,)和点(,), 任意两点间的距离为

6.(1)一、三象限角分线(直线y=x)上的点,横纵坐标相同(x,x).

(2)二、四象限角平分线(直线y= -x)上的点,横纵坐标互为相反数(x,-x).

7、一条线段的中点公式:如果线段AB的中点为点M,已知A(,)和B(,),

则中点M()

二、图形与点的坐标变化:

1.点的平移:←→坐标加减(横坐标管左右平移,纵坐标管上下平移)(上加下减,右加左减)

(1)纵坐标不变,横坐标±a: (x,y) ←→(x±a,y):图像向右(向左)平移a个单位

(2)横坐标不变,纵坐标±b: (x,y) ←→(x,y±b):图像向上(向下)平移b个单位

(3)横坐标±a,纵坐标±b: (x,y) ←→ (x±a,y±b):图像向右(向左)平移a个单位,向上(向下)平移b个单位。

复习(二)函数基础知识

(1) 函数: 如果在一个变化过程中,有两个变量x、y,对于x给定的一个值,y都有唯一 一个值与之对应,此时称y是x的函数,其中x是自变量,y是因变量.

(2) 自变量的取值范围:①函数关系式是整式,自变量取值是任意实数.②函数关系式是分式,自变量取值应使得分母不等于0.③函数关系式是偶次根式,自变量取值为非负数.④实际问题的函数式,使实际问题有意义

(3)常量与变量:常量:在某变化过程中不变的量。变量:在某变化过程中变化的量

(4)函数的三种表示方法:表格; 关系式; 图象

复习(三) 一次函数

(一)一次函数图像:

1. y=kx(k0)的图象是一条过 点(0, 0)和点(1,k)的直线。

2.y=kx+b(k0)的图象是一条过 点(0, b)和点(,0)的直线。

(二)一次函数y=kx+b系数对图像的影响:

1.系数k对图像的影响:

(1)k决定所过象限:①k>0,必过第一、三象限。②k

(2)k决定增减性:①k>0,y随x的增大而增大。②k

(3)决定倾斜程度:①越大,直线越陡;②越小,直线越缓;③越大,函数变化速度越快

(4) 已知直线上两个点的坐标,

写出 k =

(5)已知直线与x轴所夹的锐角为∠,则

①直线过一三象限,k=tan

②直线过二四象限,k= tan

2.系数b对图像影响:b决定直线与y轴的交点

(1)b>0,直线与y轴的交点在正半轴

k、b的作用

表达式:

图像

性质:

k>0

b>0

b=0

b<0

k<0

b>0

b=0

b<0

(2)b

(3)b=0,直线过原点

(三)附函数图像表格:

(四) 两直线的关系:

直线y=k1x+b1(k10)与直线y2=k2x+b2(k20)

(1)当k1 =k2 且b1 =b2时,两直线重合。(3)当k1k2时,两直线相交。

(2)当k1 =k2且b1b2时,两直线平行。

(4)当k1k2 = -1 时,两直线互相垂直.

(五)一次函数图像的平移:x管左右平移(左加右减),b管上下平移(上加下减)

1.将y=kx+b向上平移m个单位,得y=kx+b+m (注m>0)

2.将y=kx+b向下平移m个单位,得y=kx+b-m (注m>0)

3. 将y=kx+b向左平移a个单位,得y=k(x+a)+b (注a>0)

4. 将y=kx+b向右平移a个单位,得y=k(x-a)+b (注a>0)

(六)直线y=k1x+b1(k10)与直线y2=k2x+b2(k20)求交点:联立两个表达式解二元一次方程组。

(七)确定一次函数表达式:3种方法①已知k型,直接把k设成数②已知b型,直接把b设成数③普通两点型,代入两个点,解二元一次方程组

复习(四)反比例函数

1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式(或y=kx-1,k≠0),那么称y是x的反比例函数.

2.反比例函数的概念需注意以下几点:(1)k为常数,k≠0;(2)自变量x的取值范围是x≠0;(3)因变量y的取值范围是y≠0.

3. 反比例函数的图象和性质

k的符号

o

y

x

k>0

y

x

o

k<0

图像的

大致位置

所在象限

第一、三象限

第二、四象限

性质

在每一象限内y随x的增大而减小

在每一象限内y随x的增大而增大

4.︱︱的几何含义:反比例函数y= (k≠0)中比例系数k的几何意义,即过双曲线y= (k≠0)上任意一点P作x轴、y轴垂线,,则所得矩形OMDN的面积为︱︱. 所得ΔPDO面积等,为︱︱.

5.反比例函数与一次函数相交(三线四域):

一次函数=kx+b的图象与反比例函数=的图象交于点A(2,3),B(﹣3,﹣2)两点,

(1)当xx

(2)当x

(3)当xx

6.如图所示,过点A作AM⊥x轴于点M,BN⊥x轴于点N.

结论:SΔPDO=S梯形BNMA

复习(四)二次函数

(一)二次函数一般式y=ax2+bx+c的平移:(用配方法)

(1)首先化为顶点式

(2)h: 先左右平移︱h︱ (左加右减)

K: 后上下平移︱k︱(上加下减)

(二)二次函数与坐标轴的交点

1.与y轴的交点:令x=0,得y=c, 所以与y轴的交点为(0,c)

2.与x轴的交点:令y=0,得一元二次方程

①有两个交点方程有2个不等实根;

②有一个交点方程有2个相等实根

③无交点方程无实根

3.已知抛物线与x 轴两个交点为(,0)(,0)

所以有交点式:y=a(x-)(x-)

4.若抛物线与x轴交于A、B两点,则两点间的距离为

︱-︱=

(三)二次函数与系数a、b、c的关系:

(1)a决定开口方向(a>0开口向上,a<0开口向下)

a决定增减性(a>0左减右增,a<0左增右减)

︱a︱决定开口大小(︱a︱越大,开口越窄,︱a︱越小,开口越宽)

(2)a、b的符号决定对称轴位置:

①a、b同号对称轴在y轴左侧

② a、b异号轴在y轴右侧 (左同右异)

③当b=0时,对称轴为 y轴 (此时,+ c)

(3)c决定与y轴交点(0,c)的位置:

①c>0,与y轴交点在正半轴

②c<0, 与y轴交点在负半轴

③c=0,图象过原点(0,0).(此时,+ bx)

a

a>0

a<0

开口向上, 左减右增,

开口向下 ,左增右减,

b

“左同右异”

ab>0

b=0

ab<0

对称轴在 y轴左侧

对称轴为 y轴 (此时,+ c)

对称轴在 y轴右侧

c

c>0

c=0

c<0

与y轴正半轴相交;

经过原点;(此时,+ bx)

与y轴负半轴相交.

Δ=

与x轴有2个交点;

与x轴有1个交点;

与x轴有无交点;

初中芝士汇总提示您:看后求收藏(同创文学网http://www.tcwxx.com),接着再看更方便。

相关小说

阿屿封面铺(无偿接单) 连载中
阿屿封面铺(无偿接单)
霜霜如雪
简介:白嫖党看这里,本人无偿接单(长期)!喜欢的可以在评论区发,麻烦收藏一下还有我主页的那本《快穿:扮绿茶发家致富》。各位可以多次找我下单谢谢配合。多接现代(封赏在正文),也接素锦,Q版,古风的我可以试试。另外,话本上传的封面好模糊,要是想高清的可以看主页加我,栓Q【下单格式如下】各位可以多次下单!!!来者不拒!!!本人很好说话的,欢迎下单。书名:作者:小说类型:有无小字:封面颜色:其他要求:是否自带底图:
0.2万字2年前
以月之铭2 连载中
以月之铭2
苑_032274669785888018
简介:我好爱你啊,你还会回来吗?我等着你,但……
3.9万字2年前
梅赛德斯:许你岁岁年年 连载中
梅赛德斯:许你岁岁年年
爱吃魚魚魚
简介:暴躁游戏男主播x温柔游戏女主播文笔可能不好请见谅虚假的大家看看就好了,不要打扰哥几个的正常生活,也不要去扒哥几个的隐私
0.1万字2年前
四号花店 连载中
四号花店
权初少女
简介:每一种花都有不同的寓意.每位到店的顾客都会因自身原因选择不同种类的花.这里是四号花店,诚挚欢迎带着故事的您到来!
0.3万字2年前
你眼中的光照亮了我的整个青春 连载中
你眼中的光照亮了我的整个青春
三月的春
0.1万字1年前
少年死亡日记 连载中
少年死亡日记
仙鹤不仙
简介:她有一个习惯,一个写日记的习惯。然而,她每写一个日记,她身边就会死一个人。于是,她把这本日记命名为“死亡日记”。她还是持笛人,六界会因她而开战…敬请期待
0.0万字10个月前